5,474 research outputs found

    Experimental Study of the Effect of External Signal on Microwave Oscillations in a Nonrelativistic Electron Beam with Virtual Cathode

    Get PDF
    The effect of an external harmonic signal on the characteristics of microwave generation in a nonrelativistic electron beam with virtual cathode (VC) formed in a static retarding electric field (low-voltage vircator system) has been experimentally studied. A significant increase in the vircator generation power is observed when the frequency of the external signal is close to the frequency of VC oscillations. At large detunings, a broadband chaotic generation is observed.Comment: 3 pages, 2 figure

    Experimental and Theoretical Investigation into the Effect of the Electron Velocity Distribution on Chaotic Oscillations in an Electron Beam under Virtual Cathode Formation Conditions

    Full text link
    The effect of the electron transverse and longitudinal velocity spread at the entrance to the interaction space on wide-band chaotic oscillations in intense multiple-velocity beams is studied theoretically and numerically under the conditions of formation of a virtual cathode. It is found that an increase in the electron velocity spread causes chaotization of virtual cathode oscillations. An insight into physical processes taking place in a virtual cathode multiple velocity beam is gained by numerical simulation. The chaotization of the oscillations is shown to be associated with additional electron structures, which were separated out by constructing charged particle distribution functions.Comment: 9 pages, 8 figure

    Materials Contrast in Piezoresponse Force Microscopy

    Full text link
    Piezoresponse Force Microscopy contrast in transversally isotropic material corresponding to the case of c+ - c- domains in tetragonal ferroelectrics is analyzed using Green's function theory by Felten et al. [J. Appl. Phys. 96, 563 (2004)]. A simplified expression for PFM signal as a linear combination of relevant piezoelectric constant are obtained. This analysis is extended to piezoelectric material of arbitrary symmetry with weak elastic and dielectric anisotropies. This result provides a framework for interpretation of PFM signals for systems with unknown or poorly known local elastic and dielectric properties, including nanocrystalline materials, ferroelectric polymers, and biopolymers.Comment: 20 pages, 3 figures, 1 table, accepted to Appl. Phys. Lett. (without Appendices), algebraic errors were correcte

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Status report of the baseline collimation system of CLIC. Part II

    Get PDF
    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the optics design has been optimised to improve the collimation efficiency. This report presents the current status of the the post-linac collimation system of CLIC. Part II is mainly dedicated to the study of the betatron collimation system and collimator wakefield effects.Comment: 25 pages, 13 figure
    • …
    corecore